
Reinforcement Learning for Competitive Magic: The
Gathering Gameplay

Alex Thaikanov1 Blair Probst2 Casey Tzao3

Dana Evelyn4

1MIT 2Stanford University 3CMU 4University of Oxford
{alexr,blairs,caseyt,danae}@example.edu

Abstract

Magic: The Gathering is a long-horizon, stochastic, partially observable, adver-
sarial domain with a combinatorial action space and rules that rival programming
languages in expressivity. These characteristics make Magic: The Gathering
a compelling but underexplored benchmark for modern reinforcement learning
(RL). We present a framework for self-play RL in Magic: The Gathering that
unifies three components: (i) a rules-faithful simulator with hierarchical action
abstraction for the priority/stack system, (ii) a model-based self-play learner that
combines policy/value learning with search, and (iii) a meta-game outer loop for
deck optimization co-evolving against a population of opponents. We detail design
principles for state and action encoding, curriculum shaping, opponent sampling,
and evaluation protocols that account for the volatile metagame. We also outline a
results template for reporting ELO, win rates across matchups, generalization to
unseen decks, and ablations on action abstraction, search budget, and population
diversity. Our work positions Magic: The Gathering as a rigorous testbed for plan-
ning under uncertainty and large discrete action spaces, and provides a blueprint
that can be adopted or extended by future studies.

1 Introduction

Learning to act under uncertainty in multi-agent settings remains a central challenge in RL. Recent
successes in games have showcased the benefits of scale, search, and self-play: Go and classical board
games with AlphaZero-style training (15; 16), real-time strategy in StarCraft (17), and imperfect-
information domains in poker (13; 3; 4). These milestones highlight robust mechanisms—self-play,
population-based training, and planning—for synthesizing strong decision policies.

Magic: The Gathering introduces distinct obstacles beyond those domains. First, the rules en-
gine features priority passing, a LIFO stack of spells/abilities, and replacement/triggered effects,
interacting across phases and steps; the official comprehensive rules form a living specification
updated frequently (18). Second, partial observability and stochasticity arise from hidden hands and
randomized draws. Third, the action space is vast and combinatorial: even a single decision node
(e.g., declare attackers/blocks, respond with multiple stackable effects) can induce a combinatorial
explosion. Finally, the metagame is dynamic as new sets rotate in and card pools change, reminiscent
of non-stationary environments.

This paper contributes a practical, rules-aware RL framework for competitive Magic: The Gathering .
We (1) formalize a hierarchical action abstraction consistent with the stack and priority system; (2)
propose a model-based self-play learner that uses search within a learned latent model in the spirit of
MuZero (14) while accommodating partial observability (11); and (3) integrate a population-based,

Preprint. Under review.



co-evolutionary outer loop that jointly optimizes decks and policies, extending ideas from large-scale
self-play and population training (2; 10). We position evaluation practices that reflect Magic: The
Gathering ’s realities and outline an experimental scaffold others can replicate.

2 Related Work

Self-play and search. Self-play with value/policy networks accelerated by tree search underpins
breakthroughs in Go and board games (15; 16). Model-based variants such as MuZerolearn an implicit
dynamics model to plan in latent space (14). Monte Carlo Tree Search (MCTS) with UCT (12)
remains a key planning substrate.

Imperfect information and multi-agent RL. Poker systems demonstrate principled handling of
hidden information via counterfactual regret minimization and deep search (13; 3; 4). Population-
based methods mitigate overfitting to single opponents and reduce exploitability (2; 10). Game-
theoretic RL frameworks for general-sum settings (9) inform opponent modeling (7).

Large discrete action spaces. Magic: The Gathering ’s decision points often involve combinatorial
sets (e.g., subsets of attackers/blocks). Methods for large discrete action spaces such as action
embeddings and candidate pruning offer scalable approximations (8; 6).

Card games and Magic: The Gathering . Prior work has examined computational properties
of Magic: The Gathering , including undecidability/Turing completeness under idealized construc-
tions (5). While collectible card game AI literature is richer in Hearthstone than Magic: The
Gathering , many insights on deck-building and simulation-based planning transfer. Our focus is
competitive Magic: The Gathering with a rules-faithful simulator and an RL pipeline purpose-built
for the stack/priority mechanics.

3 Methodology

3.1 Environment and State Representation

We implement (or interface with) a rules engine that executes phases/steps, priority passing, stack
resolution, and state-based actions as per the comprehensive rules (18). Observations are partially
observable: each player sees public zones (battlefield, stack, graveyards, exiled cards with public
information) and their own private zones (hand). The opponent’s hand and libraries are hidden.

States are encoded as:

• Global scalars: life totals, poison counters, turn number, phase/step, storm count, available mana,
mulligan history.

• Permanents set: a permutation-invariant multiset encoder over battlefield objects (card identity,
types/subtypes, counters, tapped status, summoning sickness, ongoing continuous effects). We use
learned embeddings for card identities with type-aware features.

• Stack sequence: ordered encoding of spells/abilities on the stack, including targets and modes.
• Hand summary: private hand as a set with embeddings, plus coarse distributional features (cmc

histogram, color profile).
• History: a truncated action-observation history window; a learned recurrent state (GRU) summa-

rizes long-range context to address partial observability (11).

3.2 Action Space and Hierarchical Abstraction

The raw legal action set at each priority window includes: pass priority; cast spells (with
mode/alternative costs/targets); activate abilities; declare attackers/blockers; select targets and modes;
perform special actions. We introduce a two-level abstraction:

1. High-level intents (macro-actions): “Develop board”, “Apply pressure”, “Hold up interaction”,
“Combo execution”, “Stabilize”. Each intent maps to a constrained subspace of primitives.

2



2. Grammar-constrained primitives: parameterized actions (e.g., Cast(CardID,
Mode, Targets, CostChoice), Activate(PermanentID, AbilityID, Targets),
DeclareAttackers(Subset)). For combinatorial choices (attack/block subsets), we use
candidate generation and prune with an intent-conditioned scorer (6; 8).

Priority windows (including responses) are handled via a stack-aware controller that interleaves
policy proposals with on-policy search, enabling timely interaction during the opponent’s turn.

3.3 Learning: Model-Based Self-Play with Search

We adopt an actor-critic backbone augmented with a learned dynamics model as in MuZero (14). The
system comprises:

• Representation hθ: encodes observations and recurrent hidden state into latent s0.

• Dynamics gθ: rolls forward (s, a) 7→ (s′, r) in latent space.

• Prediction fθ: outputs policy logits over abstract actions and a value estimate.

Planning uses MCTS with UCT (12), operating in latent space, with action priors from fθ. Partial
observability is addressed by maintaining a belief-augmented latent via recurrence and by sampling
opponent hands from a learned generative model calibrated to decklists and draw rules.

Self-play population. To prevent overfitting and promote robustness, agents train in a population (2;
10): a mixture of current and historical checkpoints plus distinct deck archetypes. Opponent sampling
follows a decaying mixture of uniform and performance-weighted schedules; periodic fictitious play
style evaluation approximates exploitability trends.

3.4 Deck Optimization Outer Loop

Decks (60-card maindeck with sideboard for best-of-three) are optimized in an outer loop that treats
the inner RL policy as a black box. We explore:

• Evolutionary search: mutate decklists via card swaps restricted to legal formats; fitness is
estimated by cross-play win rate.

• Bayesian optimization: represent decklists via card-frequency embeddings; optimize acquisition
against a noisy win-rate oracle.

• Population co-evolution: jointly evolve decks and policies, encouraging metagame diversity and
preventing collapse.

To maintain legality and rules fidelity we validate each candidate against the rules engine and
ban/format lists (18).

3.5 Curriculum, Shaping, and Training Details

We stage complexity with a curriculum (1): start with creature-centric subsets (reduced triggers), then
introduce stack-based interaction and nuanced timing windows, and finally full card sets. Reward
shaping augments terminal rewards with dense proxies (life differential, card advantage, board
control) while preserving correct credit assignment through potential-based shaping.

Optimization. Policies train from reanalyzed search targets; we use prioritized replay, entropy
regularization, and PBT for hyperparameters (8; 10). Large discrete action support follows candidate
pruning plus a pointer network for target selection (6).

4 Results

4.1 Evaluation Protocol

We recommend:

3



Table 1: Overall performance (fill with your results).

Agent / Setting ELO Win Rate vs. Baseline (%) Games

Full (Ours)
No Search (Policy Only)
No Population (Single Opponent)
No Deck Outer Loop

1. ELO vs. baselines: Cross-play among population checkpoints, scripted heuristic bots, and
ablations.

2. Matchup matrix: Win rates across archetypes (e.g., Aggro, Midrange, Control, Combo) with
best-of-three sideboarding.

3. Generalization: Performance against unseen decks and after set rotations.
4. Data efficiency: Strength as a function of environment steps and search budget.

4.2 Quantitative Placeholders

4.3 Ablations

Report the marginal contribution of (i) hierarchical action abstraction, (ii) search budget, (iii) opponent
population diversity, and (iv) deck co-evolution. Use common seeds and identical training budgets to
isolate effects.

4.4 Qualitative Analysis

Include case studies of stack interactions (e.g., baiting removal, counterspell wars), combat puzzles
(profitable attack/blocks under tricks), and combo execution timing. Provide playout traces and
value-policy heatmaps for insight.

5 Discussion

What makes Magic: The Gathering hard for RL? Long horizons, branching factor spikes at
timing windows, and the need to reason about hidden information and future priority exchanges. The
rules system enables interactions akin to program execution; indeed, idealized Magic: The Gathering
has been shown Turing complete (5).

Search vs. policy. Planning mitigates myopic errors around stack timing and target selection, while
learned policies capture style and heuristics. Balancing compute between online search and offline
policy improvement mirrors lessons from AlphaZeroand MuZero (16; 14).

Population and metagame. A diverse opponent population is crucial to avoid exploitability spirals
observed in self-play. Co-evolving decks alters the loss landscape, preventing brittle specializations
and better reflecting real competitive dynamics (2).

Ethical and practical considerations. Releasing strong agents may affect online ladders and the
secondary card economy. We encourage responsible disclosure, stress-testing against exploits, and
rate-limiters in public-facing bots.

6 Conclusion

We have outlined a comprehensive framework for competitive Magic: The Gathering via self-play
RL that marries a rules-faithful simulator, hierarchical action abstraction, model-based planning, and
population-driven deck optimization. Beyond card games, the techniques speak to decision-making
in partially observable environments with large discrete action spaces and rich domain rules. We hope
this blueprint accelerates reproducible research and positions Magic: The Gathering as a challenging
benchmark that rewards progress in planning, opponent modeling, and meta-level adaptation.

4



Acknowledgments

[Optional: acknowledge compute grants, lab colleagues, or community resources.]

References
[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.

In Proceedings of the 26th International Conference on Machine Learning, pages 41–48, 2009.

[2] Christopher Berner, Greg Brockman, Brooke Chan, et al. Dota 2 with large scale deep rein-
forcement learning. arXiv preprint arXiv:1912.06680, 2019.

[3] Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus.
Science, 359(6374):418–424, 2018.

[4] Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science, 365
(6456):885–890, 2019.

[5] Alex Churchill, Stella Biderman, and Austin Herrick. Magic: The gathering is turing-complete.
arXiv preprint arXiv:1904.09828, 2019.

[6] Gabriel Dulac-Arnold, Daniel Evans, Hado van Hasselt, et al. Deep reinforcement learning in
large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

[7] He He, Jordan Boyd-Graber, Kevin Kwok, and Hal Daumé III. Opponent modeling in deep
reinforcement learning. arXiv preprint arXiv:1609.05559, 2016.

[8] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dab-
ney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In AAAI Conference on Artificial Intelligence,
2018.

[9] Junling Hu and Michael P. Wellman. Nash q-learning for general-sum stochastic games. Journal
of Machine Learning Research, 4:1039–1069, 2003.

[10] Max Jaderberg, Victor Dalibard, Simon Osindero, et al. Population based training of neural
networks. arXiv preprint arXiv:1711.09846, 2017.

[11] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1–2):99–134, 1998.

[12] Levente Kocsis and Csaba Szepesvári. Bandit based Monte-Carlo planning. In European
Conference on Machine Learning, pages 282–293, 2006.

[13] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level
artificial intelligence in no-limit poker. Science, 356(6337):508–513, 2017.

[14] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, et al. Mastering atari, go, chess and
shogi by planning with a learned model. Nature, 588:604–609, 2020.

[15] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, et al. Mastering the
game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[16] David Silver, Thomas Hubert, Julian Schrittwieser, et al. A general reinforcement learning
algorithm that masters chess, shogi and go through self-play. Science, 362(6419):1140–1144,
2018.

[17] Oriol Vinyals, Igor Babuschkin, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575:350–354, 2019.

[18] Wizards of the Coast. Magic: The gathering comprehensive rules. https://magic.wizards.
com/en/rules, 2025. Accessed: insert date of access.

5

https://magic.wizards.com/en/rules
https://magic.wizards.com/en/rules

	Introduction
	Related Work
	Methodology
	Environment and State Representation
	Action Space and Hierarchical Abstraction
	Learning: Model-Based Self-Play with Search
	Deck Optimization Outer Loop
	Curriculum, Shaping, and Training Details

	Results
	Evaluation Protocol
	Quantitative Placeholders
	Ablations
	Qualitative Analysis

	Discussion
	Conclusion

